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Our Role Has Been

S€2001

* Generate & Serve Terrain (environments)

* Host Simulation Models

 Provide Visualization Services

* Provide High Performance Ensemble Simulation

(jointly) Provide interfaces to the risk analysis
tools

Joint Goal: Perform a complete risk analysis from
scratch in a single afternoon.
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MORE DATA

Mission

Synthetic
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Virtual
Prototypes

Terrain - Starting With What We Know &
Filling in the Details
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Basic Rover Simulator iy

Sensors sez001

Terrain

ynthe
Terrain

Rover Control
Commands

Rover Movement
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Creating the Virtual Environment and Simulation [Sf
Model Is the Hard Part...... ﬁ
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» But It’s Not Enough!

» To Be Effective These Modules Should Be Embedded in an
‘Ensemble’ Simulation Environment.

Ensemble simulation is

the performance key

for:
» Rapid Design Space

Exploration

Monte Carlo Risk

Analyses

Mission Replan

During Operations
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Some Performance Results
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e Terrain Generation - Several Hours to Several
Minutes

e Can run ~ 100 simulations at once

« By moving to a ‘data agile’ environment, the
execution time of each simulation went from 6
hours to 45 minutes.

Overall - An improvement of nearly
3 orders of magnitudel
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A Comprehensive Environment Linking S
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Synthetic Environments, Simulation, & Risk Analysis
Is Key And Is This Year’s Focus
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Under the Hood
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Rovers at Three Rock Densities
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Starting With What We Know & Modeling It
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Validation with Laser Altimetry
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First Light: Real Terrain Enriched Synthetically 5]
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Hi Fidelity Sun Angle Modeling

S€2001

APL




This Approach Enables Value Focused Thinking &
Probabilistic Reasoning for Space Mission Design
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Alternative .
Mission Mission
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A New Paradigm for System Validation
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» The old paradigm.

— Tests validate the system.
¢ The new paradigm.

— Tests validate the simulation.

— The simulation validates the system.
» Example #1 — Validating Pathfinder Descent.

— Parachute, backshell, bridle, and lander tested at China Lake.

— System simulator replicated the China Lake results.

— Simulation using the projected Mars environment validated the

flight system.

» Example #2 - Similarly, the Mars Yard can validate Mars Rover

simulations under both obstacle and lighting conditions.
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Entry Descent& Landing - A Second Example
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r® Hazard Avoidance & Precision Landing &
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Terrain Serve
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Guidance & Navigation
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Multi-Center Simulation Architecture
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View of landing site with —

synthetic terrain enhancement. &
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An Ensemble EDL Simulation - Keeping Track
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Conceptual Design Process

| Contigure a Feasible syciem solition

(PDC

Knowledge Management

JPL's Proposed

Product Formulation Process Mission /
Test cvery aspect of proposed system/mission change o aaditio Techn 0 logy
Analysis and
Synthesis
(MTAS) Center
Knowledge Management R »
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Detailed Design & Implementation Process Hyps & Flight
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The Big Picture

D @
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Y Team experiences- Dialogue

between system designers

(eg., Team X & Team T)

What we want to accomplish

Analysis & Synthesis-
Dialogue between system
designers and a software

Pr,%(fr f% é/haf we valve

Explicit processes &
procedures- Dialogue
between system designers

& gctual flight hardware
an?:‘c’g%’#frﬁ’é‘grfé’ep A
Major benefit: MTAS allows you to test and iterate y

design without committing resources to detailed design
«‘&L and acquisition
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Schoppers Algorithm, 30 cm Hazards ?_,!;
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Schoppers Algorithm, 25 cm Hazards — za&
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Schoppers Algorithm, 20 cm Hazards
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Time To Call Home
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